Tuesday, September 19, 2017

Exvision High-Speed Image Sensor-Based Gesture Control

Exvision, a spin-off from University of Tokyo's Ishikawa-Watanabe Laboratory, demos gesture control from far away, based on a high speed image sensor (currently, 120fps Sony IMX208):



SensL Demos 100m LiDAR Range

SensL publishes a demo video of 100m LiDAR based on its 1 x 16 photomultiplier imager scanned in 5 x 80 deg angle:

3D Camera Use Cases

Occipital publishes few videos on a 3D camera use cases:



OmniVision Announces Automotive Reference Design

PRNewswire: OmniVision announces an automotive reference design system (ARDS) that allows automotive imaging-system and software developers to mix and match image sensors, ISPs and long-distance serializer modules.

The imaging-system industry is anticipating significant growth in ADAS, including surround-view and rear-view camera systems. NCAP mandates all new vehicles in the U.S. to be equipped with rear-view cameras by 2018. Surround-view systems (SVS) are also expected to become an even more popular feature for the luxury-vehicle segment within the same timeframe. SVSs typically require at least four cameras to provide a 360-degree view.

OmniVision's ARDS demo kits feature OmniVision's 1080p60 OV2775 image sensor, optional OV495 ISP and serializer camera module. The OV2775 is built on 2.8um OmniBSI-2 Deep Well pixel with a 16-bit linear output from a single exposure.

Monday, September 18, 2017

Samsung to Start Mass Production of 1000fps 3-Layer Sensor

ETNews reports that Samsung follows Sony footsteps to develop its own 1000fps image sensor for smartphones:

"Samsung Electronics is going to start mass-producing ‘3-layered image sensor’ in November. This image sensor is made into a layered structure by connecting a system semiconductor (logic chip) that is in charge of calculations and DRAM chip that can temporarily store data through TSV (Through Silicon Via) technology. Samsung Electronics currently ordered special equipment for mass-production and is going to start mass-producing ‘3-layered image sensor’ after doing pilot operation in next month.

SONY established a batch process system that attaches a sensor, a DRAM chip, and a logic chip in a unit of a wafer. On the other hand, it is understood that Samsung Electronics is using a method that makes 2-layered structure with a sensor and a logic chip and attaches DRAM through TC (Thermal Compression) bonding method after flipping over a wafer. From productivity and production cost, SONY has an upper hand. It seems that a reason why Samsung Electronics decided to use its way is because it wanted to avoid using other patents.
"

Turkish Startup Demos CMOS Night Vision

Ankara, Turkey-based PiKSELiM demos low-light sensitivity of its 640x512 CMOS sensor operating in the global shutter mode at 10fps and using an f/0.95 C-mount security camera optics:

Magic Leap Valuation to Grow to $6B

Bloomberg reports that AR headset startup Magic Leap is in the process of raising a new financing round of more than $500M at the valuation close to $6B. The company has already raised more than $1.3B in the previous rounds valuing it at $4.5B.

"According to people familiar with the company’s plans, the headset device will cost between $1,500 and $2,000, although that could change. Magic Leap hopes to ship its first device to a small group of users within six months, according to three people familiar with its plans."

Sunday, September 17, 2017

Haitong Securities Forecasts Smartphones with 3D Sensing Market $992.5B in 2020

InstantFlashNews quotes a number of sources in Chinese language saying that Haitong Securities analysts forecast the global sales of smartphones equipped with 3D sensors to reach $992.5B in 2020. The sales of smartphones with front structured light camera will be $667.8B, while the sales of smartphones with rear ToF camera will take $324.7B.

Haitong Securities estimates iPhone X 3D structured light components cost at ~$15, with 3D image sensor ~$3, TX component ~$7, RX ~$3, and system module about $2.

Image Sensors in AR/VR Devices

Citibank publishes a nice market report on Augmented and Virtual Reality dated by October 2016. The report emphasize a large image sensing content in almost all AR/VR devices:

Saturday, September 16, 2017

Espros Keeps Improving its ToF Sensors

Espros September 2017 Newsletter updates on the company progress with its ToF solutions:

"A real breakthrough was achieved in the field of camera calibration. Our initial goal was to simply find the optimum procedure to calibrate a DME660 camera. The result however is a revolutionary finding, that not only includes the compensation algorithm but also a simple desktop hardware for distance calibration.

No need any more for large target screens and moving stages! Simply put your camera in a shoebox sized flat field setup and calibrate the full distance range with help of the on-chip DLL stage. Done!
"


"You won't recognize our epc660 flagship QVGA imager in version 007! Improved ADC performance, 28% higher sensitivity, as well as low distance response non-uniformity (DRNU) of a few centimeters only (uncalibrated). We took 3 rounds (versions 004-006) in the fab transfer process and did not let go before we got it right."

The company also presents a preliminary data on its ToFCam 635 module: